yaze 0.3.2
Link to the Past ROM Editor
 
Loading...
Searching...
No Matches
C3 - z3ed Agent Architecture Guide

Date: October 12, 2025
Version: v0.2.2-alpha
Status: Core Features Integrated

Overview

This guide documents the architecture of the z3ed AI agent system, including learned knowledge, TODO management, advanced routing, pretraining, and agent handoff capabilities.

Architecture Overview

┌───────────────────────────────────────────────────────────────┐
│ User / AI Agent │
└────────────┬──────────────────────────────────────────────────┘
│ z3ed CLI commands
┌────────────▼──────────────────────────────────────────────────┐
│ CLI Command Router (agent.cc) │
│ │
│ Routes to: │
│ ├─ agent simple-chat → SimpleChatCommand │
│ ├─ agent learn → HandleLearnCommand │
│ ├─ agent todo → HandleTodoCommand │
│ ├─ agent test → HandleTestCommand │
│ ├─ agent plan/run/diff → Proposal system │
│ └─ emulator-* → EmulatorCommandHandler │
└───────────┬───────────────────────────────────────────────────┘
┌───────────▼───────────────────────────────────────────────────┐
│ ConversationalAgentService │
│ │
│ Integrates: │
│ ├─ LearnedKnowledgeService (preferences, patterns, memory) │
│ ├─ TodoManager (task tracking, dependencies) │
│ ├─ AdvancedRouter (response enhancement) │
│ ├─ AgentPretraining (knowledge injection) │
│ └─ ToolDispatcher (command execution) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Tool Dispatcher │
│ │
│ Routes tool calls to: │
│ ├─ Resource Commands (dungeon, overworld, sprites) │
│ ├─ Emulator Commands (breakpoints, memory, step) │
│ ├─ GUI Commands (automation, screenshots) │
│ └─ Custom Tools (extensible via CommandHandler) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Command Handlers (CommandHandler base class) │
│ │
│ Unified pattern: │
│ 1. Parse arguments (ArgumentParser) │
│ 2. Get ROM context (CommandContext) │
│ 3. Execute business logic │
│ 4. Format output (OutputFormatter) │
└────────────┬──────────────────────────────────────────────────┘
┌────────────▼──────────────────────────────────────────────────┐
│ Persistent Storage │
│ │
│ ~/.yaze/agent/ │
│ ├─ preferences.json (user preferences) │
│ ├─ patterns.json (learned ROM patterns) │
│ ├─ projects.json (project contexts) │
│ ├─ memories.json (conversation summaries) │
│ ├─ todos.json (task management) │
│ └─ sessions/ (collaborative chat history) │
└────────────────────────────────────────────────────────────────┘

Feature 1: Learned Knowledge Service

What It Does

Persists information across agent sessions:

  • Preferences: User's default settings (palette, tool choices)
  • ROM Patterns: Learned behaviors (frequently accessed rooms, sprite patterns)
  • Project Context: ROM-specific goals and notes
  • Conversation Memory: Summaries of past discussions for continuity

Integration Status: Complete

Files:

Usage Examples

# Save preference
z3ed agent learn --preference default_palette=2
# Get preference
z3ed agent learn --get-preference default_palette
# Save project context
z3ed agent learn --project "myrom" --context "Vanilla+ difficulty hack"
# Get project details
z3ed agent learn --get-project "myrom"
# Search past conversations
z3ed agent learn --search-memories "dungeon room 5"
# Export all learned data
z3ed agent learn --export learned_data.json
# View statistics
z3ed agent learn --stats

AI Agent Integration

The ConversationalAgentService now:

  1. Initializes LearnedKnowledgeService on startup
  2. Can inject learned context into prompts (when inject_learned_context_=true)
  3. Can access preferences/patterns/memories during tool execution

API:

ConversationalAgentService service;
service.learned_knowledge().SetPreference("palette", "2");
auto pref = service.learned_knowledge().GetPreference("palette");

Data Persistence

Location: ~/.yaze/agent/
Format: JSON
Files:

  • preferences.json - Key-value pairs
  • patterns.json - Timestamped ROM patterns with confidence scores
  • projects.json - Project metadata and context
  • memories.json - Conversation summaries (last 100)

Current Integration

  • cli/service/agent/learned_knowledge_service.{h,cc} is constructed inside ConversationalAgentService.
  • CLI commands such as z3ed agent learn … and agent recall … exercise this API.
  • JSON artifacts persist under ~/.yaze/agent/.

Feature 2: TODO Management System

What It Does

Enables AI agents to break down complex tasks into executable steps with dependency tracking and prioritization.

Current Integration

  • Core service in cli/service/agent/todo_manager.{h,cc}.
  • CLI routing in cli/handlers/agent/todo_commands.{h,cc} and cli/handlers/agent.cc.
  • JSON storage at ~/.yaze/agent/todos.json.

Usage Examples

# Create TODO
z3ed agent todo create "Fix input handling" --category=emulator --priority=1
# List TODOs
z3ed agent todo list
# Filter by status
z3ed agent todo list --status=in_progress
# Update status
z3ed agent todo update 1 --status=completed
# Get next actionable task
z3ed agent todo next
# Generate dependency-aware execution plan
z3ed agent todo plan
# Clear completed
z3ed agent todo clear-completed

AI Agent Integration

ConversationalAgentService service;
service.todo_manager().CreateTodo("Debug A button", "emulator", 1);
auto next = service.todo_manager().GetNextActionableTodo();

Storage

Location: ~/.yaze/agent/todos.json
Format: JSON array with dependencies:

{
"todos": [
{
"id": "1",
"description": "Debug input handling",
"status": "in_progress",
"category": "emulator",
"priority": 1,
"dependencies": [],
"tools_needed": ["emulator-set-breakpoint", "emulator-read-memory"]
}
]
}

Feature 3: Advanced Routing

What It Does

Optimizes tool responses for AI consumption with:

  • Data type inference (sprite data vs tile data vs palette)
  • Pattern extraction (repeating values, structures)
  • Structured summaries (high-level + detailed + next steps)
  • GUI action generation (converts analysis → automation script)

Status

  • Implementation lives in cli/service/agent/advanced_routing.{h,cc} and is compiled via cli/agent.cmake.
  • Hook-ups to ToolDispatcher / ConversationalAgentService remain on the backlog.

How to Integrate

Option 1: In ToolDispatcher (Automatic)

// In tool_dispatcher.cc, after tool execution:
auto result = handler->Run(args, rom_context_);
if (result.ok()) {
std::string output = output_buffer.str();
// Route through advanced router for enhanced response
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.tool_calls_made = {call.tool_name};
if (call.tool_name == "hex-read") {
auto routed = AdvancedRouter::RouteHexAnalysis(data, address, ctx);
return absl::StrCat(routed.summary, "\n\n", routed.detailed_data);
}
return output;
}

Option 2: In ConversationalAgentService (Selective)

// After getting tool results, enhance the response:
ChatMessage ConversationalAgentService::EnhanceResponse(
const ChatMessage& response,
const std::string& user_message) {
AdvancedRouter::RouteContext ctx;
ctx.rom = rom_context_;
ctx.user_intent = user_message;
// Use advanced router to synthesize multi-tool responses
auto routed = AdvancedRouter::SynthesizeMultiToolResponse(
tool_results_, ctx);
ChatMessage enhanced = response;
enhanced.message = routed.summary;
// Attach routed.gui_actions as metadata
return enhanced;
}

Feature 4: Agent Pretraining

What It Does

Injects structured knowledge into the agent's first message to teach it about:

  • ROM structure (memory map, data formats)
  • Hex analysis patterns (how to recognize sprites, tiles, palettes)
  • Map editing workflows (tile placement, warp creation)
  • Tool usage best practices

Status

  • Pretraining scaffolding (cli/service/agent/agent_pretraining.{h,cc}) builds today.
  • The one-time injection step in ConversationalAgentService is still disabled.

How to Integrate

In ConversationalAgentService::SendMessage():

absl::StatusOr<ChatMessage> ConversationalAgentService::SendMessage(
const std::string& message) {
// One-time pretraining injection on first message
if (inject_pretraining_ && !pretraining_injected_ && rom_context_) {
std::string pretraining = AgentPretraining::GeneratePretrainingPrompt(rom_context_);
ChatMessage pretraining_msg;
pretraining_msg.sender = ChatMessage::Sender::kUser;
pretraining_msg.message = pretraining;
pretraining_msg.is_internal = true; // Don't show to user
history_.insert(history_.begin(), pretraining_msg);
pretraining_injected_ = true;
}
// Continue with normal message processing...
}

Knowledge Modules

auto modules = AgentPretraining::GetModules();
for (const auto& module : modules) {
std::cout << "Module: " << module.name << std::endl;
std::cout << "Required: " << (module.required ? "Yes" : "No") << std::endl;
std::cout << module.content << std::endl;
}

Modules include:

  • rom_structure - Memory map, data formats
  • hex_analysis - Pattern recognition for sprites/tiles/palettes
  • map_editing - Overworld/dungeon editing workflows
  • tool_usage - Best practices for tool calling

Feature 5: Agent Handoff

Handoff covers CLI ↔ GUI transfers, specialised agent delegation, and human/AI ownership changes. The proposed HandoffContext structure (see code listing earlier) captures conversation history, ROM state, TODOs, and transient tool data. Serialization, cross-surface loading, and persona-specific workflows remain unimplemented.

Current Integration Snapshot

Integrated components:

  • Learned knowledge service (cli/service/agent/learned_knowledge_service.{h,cc}) with CLI commands and JSON persistence under ~/.yaze/agent/.
  • TODO manager (cli/service/agent/todo_manager.{h,cc} plus CLI handlers) with storage at ~/.yaze/agent/todos.json.
  • Emulator debugging gRPC service; 20 of 24 methods are implemented (see E9-ai-agent-debugging-guide.md).

Pending integration:

  • Advanced router (cli/service/agent/advanced_routing.{h,cc}) needs wiring into ToolDispatcher or ConversationalAgentService.
  • Agent pretraining (cli/service/agent/agent_pretraining.{h,cc}) needs the one-time injection path enabled.
  • Handoff serialization and import/export tooling are still design-only.

References

  • Main CLI Guide: C1-z3ed-agent-guide.md
  • Debugging Guide: E9-ai-agent-debugging-guide.md
  • Changelog: H1-changelog.md (v0.2.2 section)
  • Learned Knowledge: cli/service/agent/learned_knowledge_service.{h,cc}
  • TODO Manager: cli/service/agent/todo_manager.{h,cc}
  • Advanced Routing: cli/service/agent/advanced_routing.{h,cc}
  • Pretraining: cli/service/agent/agent_pretraining.{h,cc}
  • Agent Service: cli/service/agent/conversational_agent_service.{h,cc}

Last Updated: October 12, 2025
In progress: Context injection for pretraining, advanced routing integration, agent handoff implementation.